Math Matric 9th 10th Chapter Wise Tests

Chapter No#1(Matrices and determinants)

 

Year

 

 

 

                  Short and long Questions

 

   Exercise

    And

Question number

2013

(Group I)

i)Define square matrix?(definition page no#5)

ii)Find determinant of matrix

 

Long Question: Solve given equation using Cramer's rule  6x+5y=1;2x+y=3

 

Exercise#1.5 Q1(i)

 

Exercise#1.6 Q1(ii)

2013

(Group II)

i)Find determinant of matrix

ii)Define null matrix(definition page no#5)

 

Long Question: Solve given equation using Cramer's rule  2x-2y=4;3x+2y=6

Exercise#1.5 Q1(i)

 

 

Exercise#1.6 Q1(i)

2014

(Group I)

i)Define scalar matrix?(Definition page no#7)

ii)If  find value of AB?

 

Long Question: Solve given equation using Inversion method 4x+y=9;-3x-y=-5

Page#7
Example#ii-pg#15

 

Exercise#1.6 Q1(vi)

2014

(Group II)

 

 

 

i)Find determinant of matrix

ii)Define null matrix(definition page no#5)

 

Long Question: Solve the linear equation using Cramer's rule 2x-2y=4;5x-2y=-10

 

 

Example-pg#21

pg#5

Exercise#1.6 Q1(viii)

 

Exercise#1.6 Q1(vii)

2015

(Group I)

i)Define rectangular matrix?(definition page#5)

ii)If  then find

 

Long Question: solve given equation using Cramer's rule 3x-2y=1;-2x+3y=2

 

Exercise#1.3 Q6(ii)

 

Example #2 ,pg#26

 

2015

(Group II)

i))What do you meant by adjoins of a matrix give example (definition page#21)

Find product

 

Long Question: Solve given equation using inversion method 4x-2y=8;3x+y=-4 

 

 

Exercise#1.4 Q4(a)

 

Example #1 pg#26

2016

(Group I)

i)if  then prove that 2A+2B=2(A+B)

ii)  find their product

Long Question: solve given equation using Cramers rule 3x-4y=4; x+2y=8

 

Exercise#1.3 Q5(x)

 

Exercise#1.4 Q4(a)

 

Exercise#1.6 Q1(viii)

2016

(Group II)

i)Find determinant if  

ii)  find their product if possible

Long Question:Solve given equation by inversion method 3x-2y=-6; 5x-2y=-10

Exercise#1.5 Q2(i)

Exercise#1.4 Q3(ii)

 

Exercise#1.6Q1(iv)

 

 

 

2017

(Group I)

i)Define Singular matrix?

ii)If  then find

 

Long Question:Solve given equation by  Cramers rule  2x+y=3; 6x+5y=1

Page#21

Exercise#1.3 Q6(i)

 

Exercise#1.6Q1(ii)

2017

(Group II)

i)Define  matrix?

ii)

 

Long Question:Solve given equation by  Cramers rule  2x+y=3; 6x+5y=1

Page#2

Review Ex#1 Q5

 

Exercise#1.6Q1(ii)

2018

(Group I)

i) Define scalar matrix with example.

ii) Find the multiplicative inverse of the matrix (if possible)

Long Question: Solve the given by  inversion method:2x+y=3; 6x+5y=1

Page#7

Exercise#1.5 Q3(i)

 

Exercise#1.6Q1(ii)

2018

(Group II)

i) If C=[1               -1      2], then find C + [-2     1     3]

ii)If A =  and B = , then find AB (if possible)

Long Question: : Solve the given by  inversion method:2x+y=3; 6x+5y=1

Exercise#1.3 Q3(iii)

Exercise#1.4 Q2(i)

 

Exercise#1.6Q1(ii)

Important

Exercises

Short Questions: (Exercise#1.5,1.4,1.3)

Long Question:  (Exercise#1.6)

 

 

 

 

 

 

 

 

 

 











































































Chapter No#2(Real and complex number)

Year

 

                  Short and long Questions

 

   Exercise

    And

Question number

2013

(Group I)

i)simplify 

ii)Define additive identity

 

Long Question: write in term of

Exercise#2.4 Q3(iv)

Property page#40

 

Exercise#2.6 Q4(ii)

2013

(Group II)

i)Define closure property of real number

ii)Simplify

Long Question: simplify

Definition page#39

Exercise#2.4 Q3(iii)

 

Review Ex#2 Q7

2014

(Group I)

i)Evaluate

ii)if z=2+i  then find

 

Long question: simplify

Exercise#2.5 Q1(vi)

Exercise#2.6 Q5(ii)

 

Exercise#2.4 Q1(iv)

2014

(Group II)

 

 

 

i) Write in radical form

ii) separate the real and img part of

 

Long question: simplify

 

Exercise#2.3 Q1(iv)

Example #1 page#50

 

 

Review Ex#2 Q6

 

2015

(Group I)

i)Define  terminating decimal fraction with an example

ii)Solve the equation  for real x and y

 

Long question: simplify

 

Definition page#36

Exercise#2.6 Q7(iii)

 

Review Ex#2 Q6

 

2015

(Group II)

i)Simplify

 

Long Question: prove that 

Example#2 Page#44

 

Exercise#2.4 Q2

 

 

2016

(Group I)

i)Use law of exponents to simplify

ii)  write in term of a+bi

 

Long Question: simplify  

Exercise#2.4 Q1(iii)

Exercise#2.6 Q3(iv)

 

 

Ex#2.4 Q3(ii)

 

2016

(Group II)

i)Convert the fraction into decimal

ii)solve (2-3i)(x+yi)=4+i for real x and y

 

Long question:  Long Question: simplify 

 

Exercise#2.1 Q2(iv)

Exercise#2.6 Q7(i)

 

 

Rev Ex#2 Q4

 

2017

(Group I)

i) Simplify

ii)  write in term of a+bi

Long Question: simplify 

Exercise#2.4 Q3(iii)

Exercise#2.6 Q3(i)

 

Ex#2.4 Q3(ii)

 

2017

(Group II)

i)Find the value of

ii)Simplify and write your answer in the form of  

 

Long question:  Long Question: Show that

 

Exercise#2.5 Q4

Exercise#2.6 Q3(iii)

 

 

Ex#2.4 Q2

 

2018

(Group I)

i) Simplify

ii)   Find the value of

 

Long Question:  simplify

Exercise#2.4 Q3(iii)

Exercise#2.5 Q4

 

Exercise#2.4 Q1(iv)

2018

(Group II)

i) Define complex numbers?

ii) Find the value of

 

Long question:  Long Question:  simplify 

 

Page#47

Exercise#2.5 Q4

 

 

Ex#2.4 Q3(ii)

 

Important

Exercises

Short Question: (Exercise#2.4,2.5,2.6)

 Long Question: (Exercise#2.4&review)

 

                     




















































































































































 

Year

 

Short and long Questions

Chapter no#3(logarithms)

 

 

   Exercise

    And

Question number

2013

(Group I)

i)  find value of x

ii) Express log25-2log3 as single logarithm.

 

Long Question: solve using logarithm 0.8176 13.64.

Exercise#3.2 Q6(ii)

Exercise3.3 Q3(ii)

 

Exercise#3.4 Q1(i)

2013

(Group II)

i)solve

ii)prove that

 

Long Question: using logarithm find value of

Exercise#3.2 Q5(i)

Prove page#68

 

Exercise#3.4 Q1(iii)

2014

(Group I)

i)Define natural logarithm.

ii)If log2=0.3010 then find value of log32.

 

Long Question: If V= ) then find value of v when

Definition page#74

Exercise#3.3 Q5(i)

 

Exercise#3.4 Q5

 

2014

(Group II)

 

 

 

i)Define natural logarithm.

ii)If  then find value of x.

 

Long Question: find the value using logarithm  

 

Definition page#74

Exercise#3.2 Q6(i)

 

 

Review Ex#3 Q6(iii)

 

2015

(Group I)

i) If log2=0.3010 then find value of log32.

iii)Find value of x if logx=0.1821.

 

Long Question:  Find the value  by using logarithm.

Exercise#3.3 Q5(i)

Review Ex#3 Q4(ii)

 

Exercise#3.4Q1(viii)

 

2015

(Group II)

i) What is the difference between common logarithm and natural logarithm.

ii)Find value of x if logx=0.0044

 

Long Question:Find the value  by using logarithm.

Page#74

Review Ex#3 Q4(iii)

 

 

Exercise#3.4 Q1(ii)

2016

(Group I)

i)Find value of x when

ii) find value of

 

Long Question:  Find the value  by using logarithm.

Exercise#3.2 Q6(iii)

Exercise#3.3 Q4(i)

 

 

Exercise#3.4 Q1(viii)

2016

(Group II)

)Write 0.00643 in scientific notation.

ii)Find the value log512 to the  base

 

Long Question:  using logarithm find value of

Exercise#3.1 Q1(vi)

 

Exercise#3.2 Q5(ii)

 

Exercise#3.4 Q1(iii)

2017

(Group I)

i)What replacement make the statement true

ii) Express in ordinary notation

 

Long Question:  Find the value by using logarithm.

Exercise#3.2 Q4(ii)

Exercise#3.1 Q2(i)

 

 

Exercise#3.4 Q1(iv)

2017

(Group II)

i)Find value of x when

ii) Express in ordinary notation

 

Long Question:  Find the value by using logarithm.

Re Ex#3 Q3(iv)

Exercise#3.1 Q2(iii)

 

Exercise#3.4 Q1(iv)

2018

(Group I)

i)Write in scientific notation 0.0074

ii) Write in the form of single logarithm 2logx - 3logy

 

Long Question: Find using logarithm find value of

Exercise#3.1 Q1(vii)

Exercise#3.3 Q#3(iii)

 

 

Exercise#3.4 Q1(iii)

2018

(Group II)

i) Define antilogarithm.

ii)Find the common logarithm of 0.00032.

 

Long Question:  Find the value by using logarithm 0.8176  13.64

Page#74

Exercise#3.2 Q1(iii)

 

Exercise#3.4 Q1(i)

Important

Exercises

Short Question: (Exercise#3.2,3.3)

Long Question:  (Exercise#3.4)

 

 


















































































































































































 

Year

Chapter no#4(Algebraic expression and algebraic formulas)

 

Short and long Questions

 

   Exercise

    And

Question number

2013

(Group I)

i) simplify

ii)If x=2 +

 

Long Question: If x=3+  then find value of

Exercise#4.1 Q5(ii)

 

Exercise#4.4 Q3(iii)

 

 

Example#5 page#93

2013

(Group II)

i) factorize

ii)If x=3+  then find value of

Long Question: if 5x-6y=13 and xy=6 then find value of 125

Exercise#4.2 Q14(ii)

 

Exercise#4.4 Q3(iii)

 

Exercise#4.2 Q9

2014

(Group I)

i) Simplify

ii) simplify

 

Long Question: Determine rational number =a+b

Exercise#4.3 Q2(ii)

 

Exercise#4.3 Q4(iv)

 

 

Exercise#4.4 Q6

2014

(Group II)

 

 

 

i)Rationalize  

 

ii) Simplify  2(

 

Long Question: Determine rational number =a+b

Exercise#4.4 Q1(vi)

 

Exercise#4.3 Q3(iv)

 

Exercise#4.4 Q6

2015

(Group I)

i)Define polynomial expression.

ii)If x=2-  then find value of .

Long Question: If 3x+4y=11 and xy=12 then find value of 27

 

Definition page#76

Exercise4.3 Q3(i)

 

Exercise#4.2 Q7

2015

(Group II)

i)Evaluate  for x=4;y=-2;z=-1

 

Long Question: If 3x+4y=11 and xy=12 then find value of 27

Exercise#4.1 Q4(b)

 

 

Exercise#4.2 Q7

2016

(Group I)

i) Convert the rational fraction into simplest term

ii)Simplify

Long Question: Simplify

 

Exercise#4.1 Q3(v)

 

Exercise#4.3 Q4(v)

 

Review Q8(i)

2016

(Group II)

i) reduce to lowest form

 

Long Question: Simplify

Exercise#4.1 Q3(viii)

 

 

Exercise#4.1 Q6(ii)

 

 

 

2017

(Group I)

i) reduce to lowest form

ii)Simplify 

 

Long Question:

If  

 

 

Exercise#4.1 Q3(iii)

 

Exercise#4.3 Q3(iii)

 

 

Exercise#4.2 Q4

 

2017

(Group II)

i) Define monomial surd with example.

ii) If

 

Long Question:

 If

 

Exercise#4.4 Q3(i)

 

Exercise#4.2 Q5

 

2018

(Group I)

i)  Define surds with example.

 

ii) Simplify:

 

Long Question:

If  and a+b+c = -1, then find the value of ab+bc+ca.

 

 

 

Example – pg#89

 

 

Exercise#4.2 Q2

 

2018

(Group II)

i)  Define algebraic expressions

 

ii)  If a + b =5 and a - b= , then find ab.

 

 

Long Question:

If m+n+p=10 and mn + np + mp = 27, then find the value of

 

 

 

Exercise#4.2 Q1(ii)

 

Exercise#4.2 Q3

 

Important

Exercises

Short Question: (Exercise#4.1,4.2,4.3)

Long Question:  (Exercise#4.2,4.4)

 

 
























































































































































Year

Chapter#5(Factorization)

Short and Long Question

        Exercises

              And

Question numbers

2013

(Group I)

i)Factorize  9

 

Long Question: Solve cubic polynomial by factor theorem

Example page#101

 

Ex#5.4 Q6 page#111

2013

(Group II)

i)Factorize  3

 

Long Question: For what value of k polynomials P(x)=k  and q(x)=  will leave same remainder after dividing (x-3).

Ex#5.2 Q1(ii) pg#106

 

 

Ex#5.3 Q5 pg#109

 

 

2014

(Group I)

i)Factorize 

 

Long Question:  Factorize    

Ex#5.1 Q4(i) pg#100

 

Ex#5.1 Q5(iv)pg#101

 

2014

(Group II)

i) Factorize

 

Long Question: Factorize 

Ex#5.2Q6 (iv) pg#106

 

Ex#5.2 Q5(i) pg#106

 

2015

(Group I)

i)Factorize 1+2ab-

ii)Factorize

 

Long Question: if the polynomial p(x)=  is divisible by polynomial  then find value of  a and  b.

Example page#100

 

 

Ex#5.3 Q9 pg#110

 

2015

(Group II)

i) Factorize

ii) Define polynomial expression.

 

Long Question: Convert into simplest term

Ex#5.2 Q2(iv)pg#106

 

 

Ex#5.2 Q5(iii)pg#106

 

2016

(Group I)

i)Factorize  +1

 

Long Question: Factorize

Ex#5.1 Q5(v) p#101

 

Ex#5.2 Q6(ii) p#106

 

2016

(Group II)

i) Simplify

 

Long Question: Solve cubic polynomial by factor theorem

Ex#5.1 Q5(ii) p#101

 

Ex#5.4 Q6 p#111

 

2017

(Group I)

i)Factorize 

 

Long Question: Solve cubic polynomial by factor theorem

Ex#5.2 Q6(i) p#106

 

Ex#5.4 Q8 p#111

 

2017

(Group II)

i)Factorize 

 

Long Question: Solve cubic polynomial by factor theorem

Example#2  p#105

 

Ex#5.4 Q1 p#111

 

2018

(Group I)

i) Factorize: 8

 

Long Question: Factorize ( )( )-3

 

 

Ex#5.2 Q4-I  p#106

 

2018

(Group II)

i) Use the remainder theorem to find the remainder when  is divided by x+ 2.

 

Long Question: Solve cubic polynomial by factor theorem

Ex#5.3 Q1-v p#109

 

Ex#5.4 Q1 p#111

 

Important

Exercises

Short Questions: (Exercise#5.1,5.2)

 

Long Question: (Exercise#5.2,5.3)

 

 

 



No comments:

Post a Comment

Type Your Comment Here